Staff-line removal with selectional auto-encoders

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saturating Auto-Encoders

We introduce a simple new regularizer for auto-encoders whose hidden-unit activation functions contain at least one zero-gradient (saturated) region. This regularizer explicitly encourages activations in the saturated region(s) of the corresponding activation function. We call these Saturating Auto-Encoders (SATAE). We show that the saturation regularizer explicitly limits the SATAE’s ability t...

متن کامل

Rate-Distortion Auto-Encoders

A rekindled the interest in auto-encoder algorithms has been spurred by recent work on deep learning. Current efforts have been directed towards effective training of auto-encoder architectures with a large number of coding units. Here, we propose a learning algorithm for auto-encoders based on a rate-distortion objective that minimizes the mutual information between the inputs and the outputs ...

متن کامل

Transforming Auto-Encoders

The artificial neural networks that are used to recognize shapes typically use one or more layers of learned feature detectors that produce scalar outputs. By contrast, the computer vision community uses complicated, hand-engineered features, like SIFT [6], that produce a whole vector of outputs including an explicit representation of the pose of the feature. We show how neural networks can be ...

متن کامل

Variational Graph Auto-Encoders

Figure 1: Latent space of unsupervised VGAE model trained on Cora citation network dataset [1]. Grey lines denote citation links. Colors denote document class (not provided during training). Best viewed on screen. We introduce the variational graph autoencoder (VGAE), a framework for unsupervised learning on graph-structured data based on the variational auto-encoder (VAE) [2, 3]. This model ma...

متن کامل

Information Potential Auto-Encoders

In this paper, we suggest a framework to make use of mutual information as a regularization criterion to train Auto-Encoders (AEs). In the proposed framework, AEs are regularized by minimization of the mutual information between input and encoding variables of AEs during the training phase. In order to estimate the entropy of the encoding variables and the mutual information, we propose a non-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems with Applications

سال: 2017

ISSN: 0957-4174

DOI: 10.1016/j.eswa.2017.07.002